

PCI-7250/7251, cPCI-7252, LPCI-7250

NuIPC / NuDAQ Relay Actuator & Isolated D/I Cards User's Manual

 Manual Rev.
 2.01

 Revision Date:
 November 17, 2005

 Part No:
 50-11105-1040

Advance Technologies; Automate the World.

Copyright 2005 ADLINK TECHNOLOGY INC.

All Rights Reserved.

The information in this document is subject to change without prior notice in order to improve reliability, design, and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks

Product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.

Getting Service from ADLINK

Customer Satisfaction is top priority for ADLINK Technology Inc. Please contact us should you require any service or assistance.

ADLINK TECHNOLOGY INC.

Web Site:	http://www.adlinktech.com	
Sales & Service:	Service@adlinktech.com	
TEL:	+886-2-82265877	
FAX:	+886-2-82265717	
Address:	9F, No. 166, Jian Yi Road, Chungho City,	
	Taipei, 235 Taiwan	

Please email or FAX this completed service form for prompt and satisfactory service.

Company Information		
Company/Organization		
Contact Person		
E-mail Address		
Address		
Country		
TEL	FAX:	
Web Site		
F	Product Information	
Product Model		
Environment	OS: M/B: Chipset:	CPU: Bios:

Please give a detailed description of the problem(s):

Table of Contents

Table of Contents i				
Li	List of Tables iv			
Li	st of F	igures v		
1	Intro 1.1 1.2 1.3	duction 1 Features 2 Applications 2 Specifications 3 Digital input 3 Relay Output 3 Conoral Specifications 4		
	1.4	Power Consumption 4 Software Support 5 Programming Library 5 DAQ-LVIEW PnP: LabVIEW® Driver 6 PCIS-VEE: HP-VEE Driver 6 PCIS-OCX: ActiveX Controls 6 PCIS-DDE: DDE Server and InTouchTM 6 PCIS-ISG: ISaGRAFTM driver 6 PCIS-ICL: InControlTM Driver 7 PCIS-OPC: OPC Server 7		
2	Insta 2.1 2.2	Ilation 9 Unpacking Checklist 9 PCB Layout 10 PCI-7250 PCB Layout 10 cPCI-7252 PCB Layout 11 LPCI-7250 PCB Layout 12		
	2.3 2.4	Input Signal Jumper Setting. 13 Hardware Installation Outline. 14 PCI Configuration 14 PCI Slot Selection 14 Installation Procedures 14		
	2.5 2.6	Device Installation for Windows Systems 15 Connector Pin Assignments 15 PCI-7250/51 Pin Assignment 15		

		cPCI-7252 Pin Assignment	17
		LPCI-7250 CN1 Pin Assignment	18
	2.7	PCI-7250 and PCI-7251 Connection	19
3	Regi	sters	21
	3.1	PCI PnP Registers	21
	3.2	I/O Address Map	22
	3.3	Relay Output and Readback Registers	22
	3.4	Isolation Input Registers	23
4	Oper	ation Theory	25
	4.1	Using Relay Output	25
	4.2	Using Isolated Input	27
5	C/C+	+ Libraries	29
•	51	Libraries Installation	29
	52	Programming Guide	29
	0.2	Naming Convention	29
		Data Types	30
	5.3	Running Testing Utility (7250UTIL.EXE)	30
	5.4	725X Initialization	32
		@ Description	32
		@ Syntax	32
		@ Arguments	32
		@ Return Code	33
	5.5	_7250_DI, _7252_DI	34
		@ Description	34
		@ Syntax	34
		@ Arguments	34
		@ Return Code	35
	5.6	_7250_DO, _7252_DO	36
		@ Description	36
		@ Syntax	36
		@ Arguments	36
		@ Return Code	37
	5.7	_7250_DO_Read_Back, _7252_DO_ReadRelay	37
		@ Description	37
		@ Syntax	37
		@ Arguments	37
		@ Return Code	38

5.8 _7251_Check_Exist	39
@ Description	39
@ Syntax	
@ Argument	
@ Return Code	39
Appendix	41
Relay Contact Protection Circuits	41
RC Circuit	41
Diode Circuit	42
Diode & Zener diode Circuit	43
Varistor Circuit	43
Warranty Policy	45

List of Tables

Table	1-1:	Digital Input Specifications	. 3
Table	1-2:	Relay Output Specifications	. 3
Table	1-3:	General Specifications	. 4
Table	1-4:	Power Consumption Specifications	. 4
Table	2-1:	Jumpers and DI Channels	13
Table	2-2:	Input Signal Selection Jumper Settings	13
Table	2-3:	CN1 - PCI-7250/51 Pin Assignment	16
Table	2-4:	CN1 - cPCI-7252 Pin Assignment	17
Table	2-5:	LPCI-7250 CN1 Pin Assignment	18
Table	3-1:	PCI-7250 Address Map with PCI-7251 Installed	22
Table	3-2:	cPCI-7252 Address Map	22
Table	3-3:	LPCI-7250 Address Map	22
Table	3-4:	Data Format of Relay Output and Readback Status	Reg-
		isters	23
Table	3-5:	Relay Output	23
Table	5-1:	Data Types	30

List of Figures

Figure 2-1:	PCI-7250 Layout	10
Figure 2-2:	cPCI-7252 Layout	11
Figure 2-3:	LPCI-7250 PCB Layout	12
Figure 2-4:	CN1 - D Type Connector	15
Figure 2-5:	Connection between PCI-7250 and PCI-7251	19
Figure 4-1:	Form C Relay	25
Figure 4-2:	Form A Relay	26
Figure 4-3:	PCI-7250 Differential Input Circuit	27
Figure 4-4:	cPCI-7252 Isolated Input Circuit	27
Figure 4-5:	LPCI-7250 Differential Input Circuit	28

1 Introduction

The PCI-7250/7251, cPCI-7252, and LPCI-7250 Relay Actuator and Isolated D/I cards are basic Digital I/O cards for PCI bus compliant computers used in industrial applications.

This PCI-7250/7251 provide 8 relay actuators and 8 opto-isolated digital inputs. Of the eight relays, four are Form C (R0~R3) and four are Form A (R4~R7). The cPCI-7252 provides 8 relay actuators and 16 opto-isolated digital inputs; all relays are Form C. The LPCI-7250 provides 8 relay actuators and 8 opto-isolated digital inputs; all relays are Form C. They are very suited for constant ON/OFF control devices. For convenience the above models will be referred to as PCI-725X in this manual.

All digital input channels are isolated and suitable applications in noisy environment. For identical non-polarized opto-isolated digital input channels, switching can be carried out using AC-filtered or non-AC-filtered channels.

PCI-7250 is equipped with LEDs to reflect the status of each relay output. When a relay is energized, its corresponding LED will turn ON, otherwise it is OFF.

The relay outputs and digital inputs are controlled by two bytes of I/O addresses. When a bit is read or written, its output status will be controlled, or its input status will be monitored. The I/O signals are routed through to a 37-pin D-type or a 50-pin SCSI-II connector.

1.1 Features

The PCI-725X Relay Actuator and D/I card provides the following advanced features:

- ▶ 32-bit PCI-Bus, Plug and Play (PCI-7250, LPCI-7250)
- ▶ 32-bit CompactPCI® Bus, Plug and Play (cPCI-7252)
- ▶ 8 relay actuator outputs
- ▶ 8 opto-isolated digital inputs (PCI-7250, LPCI-7250)
- ▶ 16 opto-isolated digital inputs (cPCI-7252)
- LED indicators to show energized relays
- ► Jumper selectable AC-filter/non-AC-filter input signals
- On-board relay driving circuits
- On-board digital input signal conditioning circuits
- **Note:** PCI-7251 is the extension module of the PCI-7250. Each PCI-7251 card provides an additional 8 relay outputs and 8 photo isolated inputs. Up to three PCI-7251 cards can be attached to one PCI-7250 card to provide 32 relay outputs and 32 photo isolated inputs.

1.2 Applications

- Industrial ON/OFF control
- External high power relay driving signal switching
- Laboratory automation
- Industrial automation
- Switch contact status sensing, limit switch monitoring,
- Useful with A/D and D/A cards to implement a data acquisition & control system

1.3 Specifications

Digital input

Input channels	8 for PCI-7250, LPCI-7250 and PCI-7251 16 for cPCI-7252
Photo-coupler	PC-814 (for PCI-7250, PCI-7251 and cPCI-7252) PC3H4 (for LPCI-7250)
Input current 10mA rated 60mA max for isolated input	
Input Voltage	Up-to 24VDC or 24V AC 50-1,000Hz Logic Low: 0-1V Logic High 5-24V
Threshold Voltage 2.4VDC	
Input impedance 2.2KΩ	
Input mode Isolation AC-filter/ Non-AC-filter	
Isolated voltage	5000 Vrms channel-to-system (PCI-7250,PCI-7251 and cPCI-7252) 2500 Vrms channel-to-system (LPCI-7250)

Table 1-1: Digital Input Specifications

Relay Output

Output channels	8	
Relay type	4 SPDT (From C) & 4 SPST (Form A) for PCI-7250 and PCI-7251 8 SPDT (From C) for cPCI-7252 and LPCI-7250	
Contact rating 120VAC/DC, 0.5A 24VDC, 1A		
Breakdown voltage	1000V AC/DC min	
Release time	8msec typical	
Operate time	8msec typical	
Contact resistance	Bifurcated	
Insulation resistance	e 100MΩ min.	
Life expectancy > 10 million operations at full load		
LED indicators Monitor ON/OFF status of each relay		

Table 1-2: Relay Output Specifications

Coil Voltage	+5V, 33mA for each relay, total 0.264A
Power supply of Relay	+5V from the PCI-Bus

Table 1-2: Relay Output Specifications

General Specifications

Dimensions	162mm x 107mm for PCI-7250
	141mm x 102mm for PCI-7251
	160mm x 100mm for cPCI-7252
	120mm x 65mm for LPCI-7250
Bus	32-bit PCI bus
Operating temperature	0 - 60°C (Operating)
Storage temperature	-20°C - 80°C (Operating)
Humidity	5 to 90% non-condensing

Table 1-3: General Specifications

Power Consumption

Power Consumption	Note: No relay is energized
PCI-7250	+5V @ 140mA
PCI-7251	+5V @ 125mA
cPCI-7252	+5V @ 120mA
LPCI-7250	+5V @ 200mA

Table 1-4: Power Consumption Specifications

1.4 Software Support

ADLINK provides versatile software drivers and packages to address different approaches to building a system. We not only provide programming libraries such as DLLs for many Windows systems, but also provide drivers for many software packages such as LabVIEW®, HP VEETM, DASYLabTM, InTouchTM, InControlTM, ISaGRAFTM, etc.

All software options are included in the ADLINK CD. Non-free software drivers are protected with licensing codes. Without the software code, you can install and run the demo version for two hours for trial/demonstration purposes. Please contact ADLINK dealers to purchase a formal license.

Programming Library

For customers who are writing their own programs, we provide function libraries for many different operating systems, including:

- ► DOS Library: For Borland C/C++, and Microsoft C++, the functions descriptions are included in this user's guide.
- Windows 95 DLL: For VB, VC++, Delphi, BC5, the functions descriptions are included in this user's guide.
- PCIS-DASK: Included device drivers and DLL for Windows 98/NT/2000/XP. A DLL is a binary compatible across Windows 98/NT/2000/XP. That means all applications developed with PCIS-DASK are compatible across Windows 98/ NT/2000/XP. The developing environment can be VB, VC++, Delphi, BC5, or any Windows programming language that allows calls to a DLL. The user's guide and function reference manual of PCIS-DASK are in the CD. Please refer the PDF manual files under \\Manual\Software Package\PCIS-DASK

The above software drivers are shipped with the board. Please refer to the "Software Installation Guide" for installation procedures.

DAQ-LVIEW PnP: LabVIEW® Driver

DAQ-LVIEW PnP contains VIs that are used to interface with the LabVIEW® software package. DAQ-LVIEW PnP supports Windows 95/98/NT/2000/XP. The LabVIEW® drivers are shipped free with the board. You can install and use them without a license. For more information about DAQ-LVIEW PnP, please refer to the user's guide in the CD (\\Manual\Software Package\DAQ-LVIEW PnP).

PCIS-VEE: HP-VEE Driver

PCIS-VEE includes user objects, which are used to interface with the HP VEE software package. PCIS-VEE supports Windows 95/ 98/NT. The HP-VEE drivers are shipped free with the board. For more information about PCIS-VEE, please refer to the user's guide in the CD (\\Manual\Software Package\PCIS-VEE).

PCIS-OCX: ActiveX Controls

Customers familiar with ActiveX controls and VB/VC++ programming can use the PCIS-OCX ActiveX Control component library for developing applications. PCIS-OCX is designed for Windows 98/NT/2000/XP. For more information about PCIS-OCX, please refer to the user's guide in the CD (\\\Manual\Software Package\PCIS-OCX).

PCIS-DDE: DDE Server and InTouchTM

DDE stands for Dynamic Data Exchange. PCIS-DDE includes the PCI cards' DDE server. The PCIS-DDE server is included in the ADLINK CD and requires a license. The DDE server can be used in conjunction with any DDE client under Windows NT.

PCIS-ISG: ISaGRAFTM driver

ISaGRAF WorkBench is an IEC1131-3 SoftPLC control program development environment. PCIS-ISG includes ADLINK product drivers for ISaGRAF under the Windows NT environment. PCIS-ISG is included in the ADLINK CD and license is required to use the drivers.

PCIS-ICL: InControlTM Driver

PCIS-ICL is the InControl driver which supports Windows NT. PCIS-ICL is included in the ADLINK CD and license is required to use the drivers.

PCIS-OPC: OPC Server

PCIS-OPC is an OPC Server that can link with OPC clients. There are several software packages on the market which can provide OPC clients. PCIS-OPC supports Windows NT and requires a license to operate.

2 Installation

This chapter describes how to install and setup the 725X cards. Jumper settings for the digital input channel configurations (AC-filter or Non-AC-filter) and the signal definitions of the 37-pins connectors are also specified.

2.1 Unpacking Checklist

Check the shipping carton for any damage. If the shipping carton and contents are damaged, notify the dealer for a replacement. Retain the shipping carton and packing materials for inspection by the dealer. Obtain authorization before returning any product to ADLINK.

Check the following items are included in the package, if there are any items missing, please contact your dealer:

Included Items

- PCI-7250 (or PCI-7251, cPCI-7252, LPCI-7520) Relay Actuator & Isolated D/I Card
- ► ADLINK CD (for PCI-7250, cPCI-7252 and LPCI-7250)
- Software Installation Guide
- This User's Manual

Note:	The packaging of OEM versions with non-standard
	configuration, functionality, or package may vary
	according to different configuration requests.

CAUTION: The boards must be protected from static discharge and physical shock. Never remove any of the socketed parts except at a static-free workstation. Use the anti-static bag shipped with the product to handle the board. Wear a grounded wrist strap when servicing

2.2 PCB Layout

PCI-7250 PCB Layout

Figure 2-1: PCI-7250 Layout

Figure 2-2: cPCI-7252 Layout

LPCI-7250 PCB Layout

Figure 2-3: LPCI-7250 PCB Layout

2.3 Input Signal Jumper Setting

Note: This section is for PCI-7250, PCI-7251 and LPCI-7250 only. There are 8 jumpers (JP1 to JP8) on the PCI-7250, PCI-7251 and LPCI-7250; each associated with one digital input to configure that channel as either AC-Filtered or Non-AC-Filtered. Digital input channels and corresponding jumpers are listed in the table below

JUMPER	INPUT SIGNAL
JP1	D10
JP2	DI1
JP3	DI2
JP4	DI3
JP5	DI4
JP6	DI5
JP7	DI6
JP8	DI7

Table 2-1: Jumpers and DI Channels

The default setting for the input signal selection is Non-AC-Filter (DC signal input), which is shown as below:

JP1

Input Signal Selection	Non-AC-Filter (DC Signal)	AC-Filter (AC Signal)
Jumper JP1 - JP8	2-3	1-2

Table 2-2: Input Signal Selection Jumper Settings

2.4 Hardware Installation Outline

PCI Configuration

PCI cards (or CompactPCI cards) are equipped with plug and play PCI controllers which can request base addresses and interrupts according to the PCI standard. The system BIOS will assign the system resources based on the PCI card configuration registers and system parameters (which are set by the system BIOS). Interrupt assignment and memory usage (I/O port locations) can only be assigned by the system BIOS. These system resource assignments are done on a board-by-board basis. It is not suggested to assign the system resource by any other methods.

PCI Slot Selection

The PCI card can be inserted into any PCI slot without any configuration of the system resources. The CompactPCI card can also be inserted into any CompactPCI I/O slot.

Installation Procedures

- 1. Turn off your computer
- 2. Turn off all accessories (printer, modem, monitor, etc.) connected to your computer.
- 3. Remove the cover from your computer.
- 4. Setup jumpers on the PCI or CompactPCI card.
- 5. Select a 32-bit PCI slot. PCI slot are shorter than ISA or EISA slots, and are usually white or ivory.
- 6. Before handling the PCI cards, discharge any static buildup on your body by touching the metal case of the computer. Hold the edge and do not touch the components.
- 7. Position the board into the PCI slot you selected.
- 8. Secure the card in place at the rear panel of the system.

2.5 Device Installation for Windows Systems

Once Windows 95/98/2000 has started, the Plug and Play functions of the Windows system will find and locate the new NuDAQ/ NuIPC card. If this is the first time a NuDAQ/NuIPC card is installed in your Windows system, you will be prompted to input the device information source. Please refer to the "Software Installation Guide" for installation procedures for the device drivers.

2.6 Connector Pin Assignments

PCI-7250/51 Pin Assignment

The PCI-7250 card comes equipped with a 37-pin D type connector (CN1) accessible from the rear of the card. The pin assignment of the D type connector is shown in below.

Figure 2-4: CN1 - D Type Connector

Legend				
Din:	Digital input low, channel n (input signal Is not polarity sensitive)			
NC n:	Normal close pin of relay n			
NO n:	Normal open pin of relay n			
COM n:	Common pin of relay n			
N/C:	No connection			

Table 2-3: CN1 - PCI-7250/51 Pin Assignment

cPCI-7252 Pin Assignment

Signal	Pin	Pin	Signal
IGND	1	26	IGND
DI8	2	27	DI12
DI9	3	28	DI13
DI10	4	29	DI14
DI11	5	30	DI15
DIOL	6	31	DI4H
DI0H	7	32	DI4L
DI1L	8	33	DI5H
DI1H	9	34	DI5L
D2IL	10	35	DI6H
DI2H	11	36	DI6L
DI3L	12	37	DI7H
DI3H	13	38	DI7L
NO0	14	39	NO5
NO1	15	40	NO4
COM0	16	41	COM5
COM1	17	42	COM4
NC0	18	43	NC5
NC1	19	44	NC4
NO2	20	45	NO7
NO3	21	46	NO6
COM2	22	47	COM7
COM3	23	48	COM6
NC2	24	49	NC7
NC3	25	50	NC6

Table 2-4: CN1 - cPCI-7252 Pin Assignment

Legend			
Din:	Digital input channel n		
IGND:	Ground of DIn signals		
DinH:	Digital input channel n with positive polarity		
DinL:	Digital input channel n with negative polarity		
NC n:	Normal close pin of relay n		
NO n:	Normal open pin of relay n		
COM n:	Common pin of relay n		

LPCI-7250 CN1 Pin Assignment

Signal	Pin	Pin	Signal
NO0	1	26	NO4
COM0	2	27	COM4
NC0	3	28	NC4
NO1	4	29	NO5
COM1	5	30	COM5
NC1	6	31	NC5
NO2	7	32	NO6
COM2	8	33	COM6
NC2	9	34	NC6
NO3	10	35	NO7
COM3	11	36	COM7
NC3	12	37	NC7
N/C	13	38	N/C
N/C	14	39	N/C
N/C	15	40	N/C
N/C	16	41	N/C
N/C	17	42	N/C
IDI_0H	18	43	IDI_0L
IDI_1H	19	44	IDI_1L
IDI_2H	20	45	IDI_2L
IDI_3H	21	46	IDI_3L
IDI_4H	22	47	IDI_4L
IDI_5H	23	48	IDI_5L
IDI_6H	24	49	IDI_6L
IDI_7H	25	50	IDI_7L

Table 2-5: LPCI-7250 CN1 Pin Assignment

Legend			
Din:	Digital input channel n		
IGND:	Ground of DIn signals		
DinH:	Digital input channel n with positive polarity		
DinL:	Digital input channel n with negative polarity		
NC n:	Normal close pin of relay n		
NO n:	Normal open pin of relay n		
COM n:	Common pin of relay n		

2.7 PCI-7250 and PCI-7251 Connection

There are 8-relay outputs and 8-isolation inputs on both the PCI-7250 and PCI-7251. The PCI-7251 is used as an expansion for the PCI-7250. The operations of the PCI-7251 are the same as that of the PCI-7250. There can be at most 3 PCI-7251 expansion boards to one PCI-7250. Therefore, the PCI-7250 can control up to 32 relays and detect 32 input signals.

Figure 2-5: Connection between PCI-7250 and PCI-7251

3 Registers

Detailed descriptions of the registers are specified in this chapter. This information is useful for programmers who wish to control the card with low-level programming. However, we suggest users fully understand the PCI interface before starting any low-level programming. In addition, the contents of this chapter will also help users understand how to use the software drivers to configure this card.

3.1 PCI PnP Registers

This PCI card functions as a 32-bit PCI target device to any master on the PCI bus. There are three types of registers: PCI Configuration Registers (PCR), Local Configuration Registers (LCR) and 725X registers.

The PCR, which is PCI-bus specification compliant, is initialized and controlled by the Plug and Play (PnP) PCI BIOS. Users may obtain more information on the PCI BIOS specification to better understand the operation of the PCR. Please contact PCISIG to acquire PCI interface specifications.

The PCI bus controller PCI-9050 is provided by PLX Technology Inc. (www.plxtech.com). For more information about the LCR, please visit PLX Technology's web site to download relative information. It is not necessary for users to fully understand the details of the LCR if the software library provided is used. The PCI PnP BIOS assigns the base address of the LCR. The assigned address is located at an offset of 14h from the PCR.

The 725X registers are discussed in the next section. The base address, which is also assigned by the PCI PnP BIOS, is located at an offset of 18h from the PCR. Therefore, users can read the address 18h from the PCR to obtain its base address by using the BIOS function call. Do not attempt to modify the base address and interrupt that have been assigned by the PCI PnP BIOS, it may cause resource conflicts with your system.

3.2 I/O Address Map

All 725X registers are 8 bits long. Users can access these registers using 8-bit I/O instructions. Using these registers will allow the relays and status of the inputs to be controlled. The following table shows the registers address map, including descriptions and their offset addresses relative to the base address. If the PCI-7251 expansion boards are not installed, corresponding registers have no significance.

Offset	Write Read		Board
0	Relay Output	Output readback	DCI 7250
1	Not used	Isolation Input	PCI-7250
2	Relay Output	Output readback	
3	Not used	Isolation Input	PCI-7251#1
4	Relay Output	Output readback	DCI 7251 #2
5	Not used	Isolation Input	PCI-7251#2
6	Relay Output	Output readback	DCI 7251 #2
7	Not used	Isolation Input	FUF/201#3

Table 3-1: PCI-7250 Address Map with PCI-7251 Installed

Offset	Write	Board	
0	Relay Output	Isolation Input	
1	Not used	Not used	cPCI-7252
2	Not used	Output readback	

Table 3-2: cPCI-7252 Address Map

Offset	Write	Read	Board
0	Relay Output	Output readback	
1	Not used	Isolation Input	LFCI-7250

Table 3-3: LPCI-7250 Address Map

3.3 Relay Output and Readback Registers

There are 8 relays on each PCI-7250/7251, LPCI-7250 and cPCI-7252 board. Each relay is controlled by one bit in the control register. Bit value '0' means the relay is not energized. The normal

open signal line is 'open'. Bit value '1' means the relay is energized and the normal open signal line is now closed.

The initial bit values of the control register are all '0' and the status of the relay can be readback from the readback register. If the relay is open, the corresponding bit value read is '0'. If the relay is closed, the bit value read is '1'.

Bit	7	6	5	4	3	2	1	0
Relay Output	DO7	DO6	DO5	DO4	DO3	DO2	DO1	DO0
Output Readback	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0

Tahla	3-1. Data	Format of	F Polav	Output	and Poad	Iback Sta		ietore
lable	J-4. Dala	Format 0	i neiay	Output	anu neau	inack Sid	ilus ney	131613

3.4 Isolation Input Registers

There are 8 isolated input channels on the PCI-7250 / 7251 board. The status of the 8 channels can be read from the isolation input register. Each bit corresponds to each channel. Bit value "1" means input voltage is high and "0" means input voltage is low.

Bit	7	6	5	4	3	2	1	0
Iso. Input	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0
Bit	15	14	13	12	11	10	9	8
Iso. Input	DI15	DI14	DI13	DI12	DI11	DI10	DI9	DI8

Table 3-5: Relay Output

Note: Bits 8-15 are for cPCI-7252 only

4 **Operation Theory**

4.1 Using Relay Output

The PCI-7250/7251 contains two types of relays: Form C and Form A. Relays R0 - R3 are form C relays, and R4 - R7 are plain form A type. Note that the LPCI-7250 and cPCI-7252 contains Form C relays only. The differences between these two types of relays are:

1. Form C Relay: (R0 - R3)

Figure 4-1: Form C Relay

Form C type relays have three contacts: NC (Normal Close), NO (Normal Open), and COM (Common). The COM post, located at the middle, must make contact with either the NO post or NC post. When the control bit is high (1), there is contact between the COM post and NO post. If the control bit is low (0), there is contact between the COM post and NC post.

In normal power-up and reset, the relay is in **low** status.

2. Form A Relay: (R4 - R7)

Figure 4-2: Form A Relay

Form A relay only has two contacts: NO (Normal Open) and COM (Common). The COM post can make contact either with the NO post or not. When the control bit is high (1), the COM post and NO post are contacted. If the control bit is low (0), the COM post and NO post does not make contact.

In normal power-up and reset, the relay is in **low** status.

The relay output contacts are rated at a maximum of 0.5A at 120VAC (resistive), 1A 24VDC, or 0.3A 60VDC. You should reduce these ratings for inductive loads. For more information on relay contact, please refer to the Appendix.

4.2 Using Isolated Input

The PCI-7250 (or PCI-7251) contains 8 identical opto-isolated control input channels. The circuit diagram of the differential input channel is shown below.

The digital input is first routed through a photo-coupler (PC-814), which is shown in the following diagram.

The cPCI-7252 contains 16 identical opto-isolated control input channels. The circuit diagram of the differential input signals of channel number 0-7 are the same as of the PCI-7250. While the input signals for channel numbers 8-15 are isolated inputs, the connection is not polarity sensitive whether AC or DC voltage is used.

Figure 4-4: cPCI-7252 Isolated Input Circuit

The LPCI-7250 contains 8 identical opto-isolated control input channels through PC3H4 photo-coupler. The circuit is shown as the following diagram:

Figure 4-5: LPCI-7250 Differential Input Circuit

In addition, a single-pole filter with a time constant of about 5ms is used to filter AC inputs passing through.

The normal input voltage range for an active high state is 3 to 24VAC or DC. The normal input range can be extended by changing the resister (Ri) to limit the current (IF) through the PC-814 (opto-isolator to about 10mA). The exact resister value to replace the original resister Ri (1.2K Ω) can be calculated by the following formula.

```
Vin = IF x Ri
Pw = Vin x IF
```

For example, if the input voltage is 110V, then the Ri should be replace by

Ri = 110 (V) / 0.01 (A) = 11 K Ω Pw = 110 (V) X 0.01 (A) = 1.1 W

5 C/C++ Libraries

This chapter describes the software libraries for operating this card. Only functions in the DOS library and Windows 95 DLL are described. Refer to the PCIS-DASK function reference manual, which is included in the ADLINK CD, for descriptions of Windows 98/NT/2000/XP DLL functions.

The function prototypes and useful constants are defined in the header files located in the LIB directory (DOS) and INCLUDE directory (Windows 95). For the Windows 95 DLL, the developing environment can be Visual Basic 4.0 or above, Visual C/C++ 4.0 or above, Borland C++ 5.0 or above, Borland Delphi 2.x (32-bit) or above, or any Windows programming language that allows calls to a DLL.

5.1 Libraries Installation

Refer to the "Software Installation Guide" for information regarding software installation of libraries for DOS, Windows 95 DLL, or PCIS-DASK for Windows 98/NT/2000/XP.

The device drivers and DLL functions for Windows 98/NT/2000/XP are included in the PCIS-DASK. Refer to the PCIS-DASK user's guide and function reference, which is included in the ADLINK CD, for programming information.

5.2 Programming Guide

Naming Convention

The functions of the NuDAQ PCI or NuIPC CompactPCI card software drivers uses full-names to represent the functions' real meaning. The naming convention rules are:

In a DOS Environment:

```
_{hardware_model}_{action_name}.
e.g. 7250 Initial().
```

All functions in the PCI-7250 driver start with 7250 as {hardware_model}. All functions in cPCI-7252 driver start with 7252 as {hardware_model}.

In order to recognize the difference between the DOS library and Windows 95 library, a capital "W" is placed at the start of each function name for Windows 95 DLL drivers. e.g. $W_7252_initial()$.

Data Types

We have defined some data types in the Pci_7250.h (DOS) and Acl_pci.h (Windows 95) header files. These data types are used by the NuDAQ card library. We recommend you use these data types in your application programs. The following table shows the data type names and their range.

Type Name	Description	Range
U8	8-bit ASCII character	0 to 255
I16	16-bit signed integer	-32768 to 32767
U16	16-bit unsigned integer	0 to 65535
132	32-bit signed long integer	-2147483648 to 2147483647
U32	32-bit unsigned long integer	0 to 4294967295
F32	32-bit single-precision floating-point	-3.402823E38 to 3.402823E38
F64	64-bit double-precision floating-point	-1.797683134862315E308 to 1.797683134862315E309
Boolean	Boolean logic value	TRUE, FALSE

Table 5-1: Data Types

5.3 Running Testing Utility (7250UTIL.EXE)

After finishing the DOS installation, you can execute the utility by typing the following command:

The following:

```
C> cd\ADLINK\7252\DOS\UTIL
("cd\ADLINK\7250\DOS\util" for PCI-7250)
C> 7252UTIL
```

The following interface will be displayed on the screen.

🎇 7252U TIL	
et Ine E E E A X	
cPCI-7252 DIO testing, Base Address = C400 IRQ=10	
Digital Input 00 gital Output 00 0 0 01 0 0 02 1 0 03 0 0 04 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0	
<pre><f8> : Enable/Disable interrupt <esc>: Quit</esc></f8></pre>	

You can use this program to test the functionality of the digital inputs and outputs.

A detailed description of each function is specified in the proceeding sections.

5.4 725X Initialization

@ Description

The PCI-7250 and cPCI-7252 cards are initialized according to the card number. Because the PCI-7250 has a PCI bus architecture and meets the plug and play design specification, the IRQ and base_address (pass-through address) are assigned by the system BIOS directly. Every PCI-7250 card has to be initialized by this function before calling any other functions.

Note: Because the configuration of PCI card is handled by the system, there are no jumpers or IRQ selection on the PCI board that needs to be set up by the users.

@ Syntax C/C++ (DOS)

```
U16 _7250_Initial (U16 *existCards, PCI_INFO
 *pciInfo)
```

```
U16 _7252_Initial (U16 *existCards, PCI_INFO
 *pciInfo)
```

C/C++ (Windows 95)

```
U16 W_7250_Initial (U16 *existCards, PCI_INFO *pciInfo)
```

```
U16 W_7252_Initial (U16 *existCards, PCI_INFO
 *pciInfo)
```

Visual Basic (Windows 95)

@ Arguments

existCards: The number of installed PCI-7250 cards. The returned value shows how many PCI-7250 cards are installed in your system.

pciinfo: It is a structure to memorize the PCI bus plug and play initialization information, which is decided by the P&P BIOS. The PCI_INFO structure is defined in ACL_PCI.H. The base I/O

addresses and the interrupt channel number are stored in pciinfo, which is for reference.

@ Return Code

ERR_NoError, ERR_PCIBiosNotExist

5.5 _7250_DI, _7252_DI

@ Description

This function is used to read data from the digital input port. There are eight 8-bit digital inputs on the PCI-7250 or PCI-7251 extended board. You can obtain all 32 input data from using the _7250_DI function.

@ Syntax C/C++ (DOS)

U16 _7250_DI (U16 cardNo, U16 diPortNo, U16 *diData)

U16 _7252_DI (U16 cardNo, U16 *diData)

C/C++ (Windows 95)

U16 W_7250_DI (U16 cardNo, U16 diPortNo, U16
 *diData)
U16 W 7252 DI (U16 cardNo, U16 *diData)

Visual Basic (Windows 95)

W_7250_DI (ByVal cardNo As Integer, ByVal diPortNo As Integer, diData As Integer) As Integer W_7252_DI (ByVal cardNo As Integer, diData As Integer) As Integer

@ Arguments

cardNo: card number selected

diPortNo: Digital Input Channel No, the constant is:.

DI_PORT0	0x00	Access the 8 Digital Input of PCI-7250
DI_PORT1	0x01	Access the 8 Digital Input of Expansion Board PCI-7251#1
DI_PORT2	0x02	Access the 8 Digital Input of Expansion Board PCI-7251#2
DI_PORT3	0x03	Access the 8 Digital Input of Expansion Board PCI-7251#3

Note: This argument is not necessary for cPCI-7252

diData: return 8-bit value from digital port.

@ Return Code

ERR_NoError ERR_BoardNoInit

5.6 _7250_DO, _7252_DO

@ Description

This function is used to write data to the digital output port. This energizes or de-energizes the RELAY. There are 8 digital outputs on the PCI-7250 or PCI-7251 extended board. You can control all 32 RELAY's through using the _7250_DO function.

@ Syntax C/C++ (DOS)

U16 _7250_DO (U16 cardNo, U16 doPortNo, U16 doData)

U16 _7252_DO (U16 cardNo, U16 doData)

C/C++ (Windows 95)

Visual Basic (Windows 95)

W_7250_DO (ByVal cardNo As Integer, ByVal doPortNo As Integer, ByVal doData As Integer) As Integer W_7252_DO (ByVal cardNo As Integer, ByVal doData As Integer) As Integer

@ Arguments

cardNo: card number selected

doChannelNo: Digital Output Channel No, the constant is:.

DI_PORT0	0x00	Access the 8 Digital Input of PCI-7250
DI_PORT1	0x01	Access the 8 Digital Input of Expansion Board PCI-7251#1
DI_PORT2	0x02	Access the 8 Digital Input of Expansion Board PCI-7251#2
DI_PORT3	0x03	Access the 8 Digital Input of Expansion Board PCI-7251#3

Note: This argument is not necessary for cPCI-7252

doData: value will be written to digital output port

@ Return Code

ERR_NoError, ERR_BoardNoInit

5.7 _7250_DO_Read_Back, _7252_DO_ReadRelay

@ Description

This function is used to read-back data from the digital output port which is control by the 725X_DO function. There are 8-bit digital outputs on the PCI-7250, cPCI-7252, or PCI-7251 extended board. You can readback all RELAY status (High or Low) by using this function.

@ Syntax C/C++ (DOS)

- U16 _7250_DO_Read_Back (U16 cardNo, U16 doChannelNo, U8 *doReadBackData)
- U16 _7252_DO_ReadRelay (U16 cardNo, U16 doReadBackData)

C/C++ (Windows 95)

- U16 W_7252_DO_ReadRelay (U16 cardNo, U16 *doReadBackData)

Visual Basic (Windows 95)

- W_7250_DO_Read_Back (ByVal cardNo As Integer, ByVal doChannelNo As Integer, doReadBackData As Integer) As Integer

@ Arguments

cardNo: card number selected

doChannelNo: Digital Output Channel No, the constant is:

DI_PORT0	0x00	Access the 8 Digital Input of PCI-7250
DI_PORT1	0x01	Access the 8 Digital Input of Expansion Board PCI-7251#1
DI_PORT2	0x02	Access the 8 Digital Input of Expansion Board PCI-7251#2

DI_PORT3 0x03 Access the 8 Digital Input of Expansion Board PCI-7251#3

Note: This argument is not necessary for cPCI-7252

diReadBackData: value read back from digital output port

@ Return Code

ERR_NoError, ERR_BoardNoInit

5.8 _7251_Check_Exist

@ Description

This function is used to check the existence of the PCI-7251 expanded board. For normal configuration, each PCI-7250 can be connected with up to three PCI-7251 boards. This function is used to detect the presence of the PCI-7251.

@ Syntax C/C++ (DOS)

```
U16 _7251_Check_Exist
(U16 cardNo, U16 extnesionBoardNo)
C/C++ (Windows 95)
U16 _7251_Check_Exist
(U16 cardNo, U16 extnesionBoardNo)
Visual Basic (Windows 95)
```

```
W_7251_Check_Exist (ByVal cardNo As Integer,
ByVal extensionBoardNo As Integer) As
Integer
```

@ Argument

cardNo: card number to select borad

existBoardNo: Extension PCI-7251 No.

PCI_7251_EX1	0x01	PCI-7251 Board #1
PCI_7251_EX2	0x02	PCI-7251 Board #2
PCI_7251_EX3	0x03	PCI-7251 Board #3

@ Return Code

PCI	7251	EXIS	1	
PCI	7251	NOT	EXIST	0

Appendix

Relay Contact Protection Circuits

The contacts are the most important elements of a relay construction, Contact performance conspicuously influenced by contact material, and voltage and current values applied to the contacts.

Another important issue is contact protection; the right contact protection circuit can suppress the counter EMF to a low level. However, note that incorrect use will result in an adverse effect. Typical contact protection circuits are given below:

RC Circuit

This circuit is suitable for DC applications. If the load is a timer, leakage current flow through the RC circuit may cause faulty operation.

The circuit below is suitable for both DC and AC applications. If the load is a relay or solenoid, the release time is lengthened. Effective when connected to both contacts if the power supply voltage is 24V or 48V and the voltage cross the load is 100 to 200V.

Device Selection:

As a guide in selecting R and C,

- R: 0.5 to 1Ω per 1V contact voltage
- ► C: 0.5 to 1µF per 1A contact current

Values vary depending on the properties of the capacitor C acting to suppress the discharge the moment the contacts open. Resistor R acts to limit the current when the power is turned on. Test to confirm. Use a capacitor with a breakdown voltage of 200 to 300V. Use AC type capacitors (non-polarized) for AC circuits.

Diode Circuit

This circuit is suitable for DC applications. The diode connected in parallel causes the energy stored in the coil to flow to the coil in the form of current and dissipates it as joule heat at the resistive component of the inductive load. This circuit further delays the release time compared to the RC circuit.

Device Selection:

Use a diode with a reverse breakdown voltage of at least 10 times the circuit voltage and a forward current at least as large as the load current.

Diode & Zener diode Circuit

This circuit is also suitable for DC application. Effective when the release time i in the diode circuit is too long.

Device Selection:

Use a zener diode with a zener voltage about the same as the power supply voltage.

Varistor Circuit

This circuit is also suitable for both AC & DC applications. Using the stable voltage characteristics of the varistor, this circuit prevents excessively high voltages from being applied across the contacts. This circuit also slightly delays the release time. Effective when connected to both contacts if the power supply voltage is 24V or 48V and the voltage cross the load is 100 to 200V.

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all the after-sales services we offer, please read the following carefully.

- Before using ADLINK's products please read the user manual and follow the instructions exactly. When sending in damaged products for repair, please attach an RMA application form which can be downloaded from: http:// rma.adlinktech.com/policy/.
- 2. All ADLINK products come with a two-year guarantee:
 - The warranty period starts from the product's shipment date from ADLINK's factory.
 - Peripherals and third-party products not manufactured by ADLINK will be covered by the original manufacturers' warranty.
 - For products containing storage devices (hard drives, flash cards, etc.), please back up your data before sending them for repair. ADLINK is not responsible for loss of data.
 - Please ensure the use of properly licensed software with our systems. ADLINK does not condone the use of pirated software and will not service systems using such software. ADLINK will not be held legally responsible for products shipped with unlicensed software installed by the user.
 - For general repairs, please do not include peripheral accessories. If peripherals need to be included, be certain to specify which items you sent on the RMA Request & Confirmation Form. ADLINK is not responsible for items not listed on the RMA Request & Confirmation Form.

- 3. Our repair service is not covered by ADLINK's two-year guarantee in the following situations:
 - Damage caused by not following instructions in the user's manual.
 - Damage caused by carelessness on the user's part during product transportation.
 - Damage caused by fire, earthquakes, floods, lightening, pollution, other acts of God, and/or incorrect usage of voltage transformers.
 - Damage caused by unsuitable storage environments (i.e. high temperatures, high humidity, or volatile chemicals).
 - Damage caused by leakage of battery fluid during or after change of batteries by customer/user.
 - Damage from improper repair by unauthorized technicians.
 - Products with altered and/or damaged serial numbers are not entitled to our service.
 - ► Other categories not protected under our warranty.
- 4. Customers are responsible for shipping costs to transport damaged products to our company or sales office.
- To ensure the speed and quality of product repair, please download an RMA application form from our company website: http://rma.adlinktech.com/policy. Damaged products with attached RMA forms receive priority.

If you have any further questions, please email our FAE staff: service@adlinktech.com.